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Abstract
Background/Aims: The association between serum alkaline phosphatase (ALP) with adverse 
cardiovascular outcomes, in Chronic Kidney Disease (CKD) patients has previously been reported 
and may be a result of increased vascular calcification and inflammation. Here we report, for 
the first time, the effects of pharmacologic epigenetic modulation on levels of ALP and kidney 
function via a novel oral small molecule BET inhibitor, apabetalone, in CKD patients. Methods: 
A post-hoc analysis evaluated patients with estimated glomerular filtration rate (eGFR) <60 
mL/min/1.73m², who participated in the apabetalone phase 2 randomized controlled trials 
(SUSTAIN and ASSURE). 48 CKD subjects with a history of cardiovascular disease (CVD) were 
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treated with 100mg twice-daily of 24 and 26 weeks of apabetalone or placebo. ALP and eGFR 
were measured prior to randomization and at final visits. Results: Patients who received 
apabetalone (n=35) versus placebo (n=13) over 6 months showed significantly (p=0.02) 
lowered serum ALP -14.0% (p<0.0001 versus baseline) versus -6.3% (p=0.9 versus baseline). 
The eGFR in the apabetalone group increased by 3.4% (1.7 mL/min/1.73 m2) (p=0.04 versus 
baseline) and decreased by 5.8% (2.9 mL/min/1.73 m2) (p=0.6 versus baseline) in the placebo 
group. Apabetalone was well tolerated. Conclusion: A post-hoc analysis of CKD subjects from 
the SUSTAIN and ASSURE randomized controlled trials demonstrated favorable effects of 
apabetalone on ALP and eGFR, and generated the hypothesis that epigenetic modulation by 
BET inhibition may potentially offer a novel therapeutic strategy to treat CVD and progressive 
kidney function loss in CKD patients. This is being examined in the phase III trial BETonMACE.

Introduction

Chronic kidney disease (CKD) encompasses a set of heterogeneous disorders that 
negatively affect the structure and function of the kidneys [1]. These disorders typically 
include diabetes, hypertension, CVD, obesity, and others that contribute to progressive 
kidney damage [1]. The goal of CKD management is to prevent or slow the progression of 
kidney damage, reduce CVD complications and associated disorders (anemia, bone disease 
and hypertension), and improve quality of life.  Current interventions typically include anti-
hypertensive medications, oral hyperglycemic agents, and lipid-modifying medications. 
However, these approaches do not address some of the key drivers of CKD which include 
calcification, inflammation, and oxidative stress [2]. The high-burden of CVD-related 
complications and mortality observed in CKD patients remains despite available treatments 
[2]. Novel approaches targeting vascular calcification and inflammation to reduce the 
increased CVD outcomes associated with CKD are warranted.

Bromodomain and extra-terminal (BET) proteins are a family of bromodomain (BD) 
containing proteins that bind acetylated lysines on chromatin thereby regulating gene 
transcription [3]. Through this epigenetic mechanism, BET proteins have been shown 
to regulate the increased expression of proteins implicated in the development of many 
disease states [4]. Importantly, in two recent studies, the impact of inhibiting these proteins 
using a BET inhibitor has been investigated in kidney disease. In animal studies, JQ1, a 
non-clinical BET inhibitor, abrogated renal inflammation in murine models of unilateral 
ureteral obstruction, anti-basal glomerular nephritis, and infusion of Angiotensin II [5]. JQ1 
reduces the expression at the transcriptional level of several key pro-inflammatory genes: 
interleukin-6 (IL-6), C-C motif chemokine-2 (CCL-2), and C-C motif chemokine (CCL-5) 
[5]. Additionally, a clinical BET inhibitor candidate, IBET-151, decreased the activation of 
multiple signaling pathways associated with renal fibroblast activation in an animal model of 
renal fibrosis, thus demonstrating the potential of BET inhibition to attenuate renal fibrosis 
[6]. These results demonstrate that BET inhibition reduces renal fibrosis and inflammation, 
suggesting a potential therapeutic application in CKD.

Apabetalone (RVX-208) is an oral small molecule that targets the second bromodomain 
of BET proteins BRD2, BRD3, and BRD4 and is currently being developed for the treatment 
of CVD [7]. Apabetalone functions by inhibiting the transcriptional interactions of BET 
proteins with acetylated lysines on histone tails and other transcription factors [7,8]. Pan-
BET inhibitors target the BET proteins by binding to bromodomains 1 (BD1) and 2 (BD2) 
with equal affinity, apabetalone, however binds preferentially to BD2 [8]. Apabetalone 
is the first BET inhibitor to be evaluated in human clinical trials for treatment of chronic 
disease, and has been shown to target multiple processes that underlie CVD, including 
reverse cholesterol transport, atherogenesis, thrombosis and vascular inflammation [9, 10]. 
A recent pharmacokinetic study of apabetalone treatment in patients with late stage CKD 
revealed that a single dose of apabetalone rapidly downregulated multiple CKD and CVD 
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protein markers, and associated molecular pathways [11]. Moreover, in the phase II clinical 
studies with apabetalone, patients treated with apabetalone were less likely to experience a 
major adverse cardiovascular event (MACE) and experienced reductions in CKD risk factors 
such as ALP [9]. ALP catalyzes the breakdown of inorganic pyrophosphate, which functions 
as an important inhibitor of calcification and mineralization [12]. Expressed by vascular 
smooth muscle cells, ALP has been previously associated with vascular calcification [13]. 
Higher ALP levels are correlated with increased risk of cardiovascular disease, calcification, 
and mortality in populations with and without CKD [14-16]. Pharmacological inhibition of 
ALP improves vascular calcification, cardiac hypertrophy and survival in an animal model of 
vascular ALP overexpression [17]. Serum ALP has also been associated with CKD progression 
and proteinuria [13, 18]. However, the effect of ALP inhibition on CKD progression has not 
yet been investigated. Here we perform a post-hoc analysis of the pooled SUSTAIN and 
ASSURE studies and evaluate the effects of apabetalone on the levels of ALP and other CKD 
risk factors in patients with established coronary artery disease and estimated glomerular 
filtration rate (eGFR) below 60 mL/min/1.73m2.

Materials and Methods

Study Design: SUSTAIN and ASSURE
The full rationale and design of the two studies, SUSTAIN (NCT01423188) and ASSURE (NCT01067820) 

have been published previously [19]. The phase IIb SUSTAIN and ASSURE trials were designed to evaluate 
the effects of apabetalone on lipid parameters and progression of coronary atherosclerosis using serial 
intravascular ultrasound, respectively. Both trials enrolled patients with established CVD receiving standard 
of care therapy, including statins and then randomized to receive either apabetalone or placebo for a period 
of 6 months. Similarities in the clinical trial design included the inclusion criteria, identical dosing regimen 
of apabetalone, comparable treatment durations (24 and 26 weeks, respectively) and the replicate placebo 
groups, providing rationale for the data to be pooled and analyzed. The major differences of the two trials 
were in the severity of the CVD. In the SUSTAIN study, patients were required to have documented stable 
coronary artery disease whereas in the ASSURE study patients were scheduled to undergo coronary 
angiography for a clinical indication. This difference provided a broader and more integrated analysis of the 
effects of apabetalone over 6 months of treatment.

Post-hoc Subgroup Determination
After combining data from the two trials, a total of 499 subjects received either 100mg b.i.d. of 

apabetalone (n=331) or placebo (n=168). In the SUSTAIN study, a total of 28 patients had baseline eGFR<60 
mL/min/1.73 m2, with 18 randomized to the apabetalone group and 10 to the placebo group. In the ASSURE 
study, a total of 20 patients had baseline eGFR<60 mL/min/1.73 m2, with 17 randomized to the apabetalone 
group and 3 to the placebo group. A total of 48 patients were included in this post-hoc analysis.

Biochemical Measures
A central laboratory performed all biochemical determinations including creatinine and ALP (ACM, 

Rochester, NY, USA; and York, UK). The Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) 
equation was used to calculate the eGFR [20].

Statistical analysis
Categorical variables are summarized using frequencies (%), while laboratory parameters are 

reported as median (min, max) as data was not normally distributed. All patients treated with apabetalone 
were compared with those receiving placebo in terms of clinical characteristics, biochemical parameters, 
and investigator-reported serious adverse events (SAEs). The Fisher’s exact test was used to examine the 
difference in clinical characteristics and the Mann-Whitney test was used to examine the differences in 
biochemical parameters between treatment groups at baseline. The median percent change from baseline 
to 24/26 weeks (SUSTAIN/ASSURE) in the renal parameters was analyzed using a 2-sided Van Elteren test 
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of apabetalone vs placebo, stratified by study in the safety population. Baseline was defined as the last non-
missing value prior to randomization. All statistical analyses were performed using SAS version 9.3 (SAS 
Institute Inc., Cary, NC, USA).

Serious Adverse Events
System organ classes and preferred terms are coded using the MedDRA Dictionary (Version 13.0 and 

14.1). A subject with multiple occurrences of an AE is counted only once in the System Organ Class and 
Preferred Term category.

Results

A total of 48 CKD patients were included 
in the post-hoc analysis, 35 who received 
apabetalone treatment and 13 on placebo 
(Fig. 1). One patient from the placebo group 
was lost due to death and one patient in the 
apabetalone group discontinued the study. 

Baseline clinical characteristics 
and concomitant medication use are 
summarized in Table 1. Due to the small 
sample size of each treatment group, 
there were some differences in baseline 
characteristics between apabetalone and 
placebo groups. Patients treated with 
apabetalone were more likely to have higher 
levels of creatinine (1.3 mg/dL vs 1.1 mg/
dL; p=0.002). Although this difference was 
observed, the baseline eGFR measurements 
between the two treatment groups were 
similar (p=0.7). Patients in the apabetalone 
treatment group were more likely to be male (77.1% vs 30.8%; p=0.003). The concomitant 
statin allocation was different between treatment groups as apabetalone treated patients 
were more likely to be co-administered rosuvastatin (77.1% vs. 38.5%; p=0.02) while 
placebo treated patients were more likely to be co-administered atorvastatin (61.5% vs 
22.9%; p=0.02). 

Six months of apabetalone treatment yielded a reduction in ALP versus baseline of 
14.0% (12.0 U/L) (p<0.0001 vs baseline) compared to a reduction of 6.3% (4.5 U/L) (p=0.9 
vs baseline) in the placebo group. The difference between groups was significant (p = 0.02) 
(Table 2). eGFR in the apabetalone group increased by 3.4% (1.7 mL/min/1.73 m2) (p=0.04 
vs baseline) and decreased by 5.8% (2.9 mL/min/1.73 m2) (ns vs baseline) in the placebo 
group (Table 2). Reductions in blood urea nitrogen (BUN) were similar between the two 
groups, and did not differ statistically (data not shown). Changes in additional markers of 
bone metabolism and liver function such as serum calcium, serum phosphate, serum 
lactate dehydrogenase, serum alanine aminotransferase, serum aspartate transaminase, 
and serum gamma-glutamyl transferase did not show any differences between treatment 
groups (data not shown).

Apabetalone was well tolerated with fewer patients in the apabetalone group 
experiencing an SAE compared to the placebo group (5/35, 14.3% compared to 2/13, 
15.4%) (Table 3). In the apabetalone group, all of the SAEs were assessed by the Investigator 
unrelated to treatment with the study drug.

Fig. 1. Disposition of Patients Eligible for Post-hoc 
Analysis
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Discussion

Changes in the epigenetic landscape are a recognized consequence of chronic kidney 
disease. Pathogenic signaling initiated by heightened levels of oxidative stress, advanced 
glycation end-products, pro-inflammatory cytokines, and uremic toxins induce changes in 
epigenetic modifications, including methylation and acetylation, on chromatin associated 
proteins [21-23]. Apabetalone is the first epigenetic oral therapeutic, in the bromodomain 

Table 2. Effects of Apabetalone on ALP and eGFR in the subgroup of patients with baseline eGFR<60 mL/
min/1.73 m2 from the pooled SUSTAIN and ASSURE studies
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Parameter 
Placebo (n =13) 
Percent Change 
From Baseline 

p-value vs. baseline 
Apabetalone (n=35) 

Percent Change 
From Baseline 

p-value vs. baseline p-value between 
groups 

Alkaline 
Phosphatase, U/L 

-6.3 0.9 -14.0 <0.0001 0.02 

eGFR, mL/min per 
1.73m² 

-5.8 0.6 +3.4 0.04 0.3 

Table 1. Patient demographics, concomitant medications, and baseline laboratory values in placebo- and 
apabetalone treated patients with baseline eGFR<60 mL/min/1.73 m2 from the pooled SUSTAIN and ASSURE 
studies. Categorical variables are summarized using frequencies N(%), while laboratory parameters are 
reported as median (min, max); eGFR estimated glomerular filtration rate, hsCRP high-sensitivity C-reactive 
protein, HDL-C high-density lipoprotein cholesterol, LDL-C low-density lipoprotein cholesterol 

Parameter All (n=48) Placebo (n=13) Apabetalone (n=35) p-value 
Age, yrs 67.5 (43 – 83) 68 (55 – 83) 67 (43 – 81) 0.2 
Male 31 (64.6) 4 (30.8) 27 (77.1) 0.006 
Caucasian 36 (75.0) 10 (76.9) 26 (74.3) 1.0 
Body mass index, kg/m² 29.5 (17.3 – 49.4) 29.8 (20.0 – 48.1) 29.4 (17.3 – 49.4) 0.8 
Hypertension 42 (87.5) 12 (92.3) 30 (85.7) 1.0 
Hyperlipidemia 29 (60.4) 6 (46.2) 23 (65.7) 0.3 
Cardiovascular Disease History 46 (95.8) 13 (100.0) 33 (94.3) 1.0 
Diabetes 24 (50.0) 6 (46.2) 18 (51.4) 1.0 
Smoker 8 (16.7) 3 (23.1) 5 (14.3) 0.7 
     
Statin Use     
Atorvastatin 16 (33.3) 8 (61.5) 8 (22.9) 0.02 
Rosuvastatin 32 (66.7) 5 (38.5) 27 (77.1) 0.02 
     
Concomitant Medications     
ACE Inhibitors 20 (41.7) 4 (30.8) 16 (45.7) 0.5 
Beta Blockers 28 (58.3) 10 (76.9) 18 (51.4) 0.2 
Anticoagulants 39 (81.3) 9 (69.2) 30 (85.7) 0.2 
Diabetes Medications 24 (50.0) 6 (46.2) 18 (51.4) 1.0 
     
Baseline Chemistry     
Alkaline Phosphatase, U/L 76 (39 – 156) 70 (59 – 156) 77 (39 – 134) 0.4 
eGFR, mL/min per 1.73 m² 53.6 (40.0 – 59.7) 53.0 (42.0 – 59.7) 54.4 (40.0 – 59.1) 0.7 
Creatinine, mg/dL 1.3 (1.0 – 1.6) 1.1 (1.0 – 1.5) 1.3 (1.0 – 1.6) 0.002 
hsCRP, mg/L 2.1 (0.4 – 22.5) 2.3 (0.9 – 22.5) 1.8 (0.4 – 11.3) 0.06 
HDL-C, mg/dL 39.0 (23.0 – 56.0) 44.0 (31.0 – 56.0) 38.5 (23.0 – 54.0) 0.09 
Apolipoprotein A-I, mg/dL 121.5 (79.8 – 168.7) 134.8 (90.1 – 168.7) 121.4 (79.8 – 159.3) 0.3 
LDL-C, mg/dL 91.5 (42.0 – 190.3) 98.1 (51.4 – 151.0) 89.6 (42.0 – 190.3) 0.3 
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and extra-terminal (BET) protein inhibitor class that preferentially targets the second 
bromodomain of BET family members [8]. These domains are a family of evolutionary 
conserved modules that bind to acetylated lysine residues which are found on the tails of 
histones and other transcription factors. The interaction between the BET protein and the 
acetylated lysines via the bromodomain plays a key role in chromatin organization and 
regulation of gene transcription. Apabetalone acts by inhibiting BET proteins from binding 
to acetylated lysine thus representing a mechanism by which gene expression can be 
modulated [8]. This single target approach has the potential to impact multiple dysregulated 
genes and biological pathways that are known to drive vascular disease. Recent findings have 
demonstrated apabetalone treatment can reduce expression of calcification and vascular 
inflammation biomarkers, as well as factors both in the fibrin clotting cascade and the 
complement system [9, 10]. These pathways play a potential role in the biology underlying 
the pathogenesis of diabetes and CKD as well as cardiovascular disease.

In this post-hoc sub-analysis of the SUSTAIN and ASSURE phase II studies, involving 
patients with eGFR <60 mL/min/1.73m² at baseline, a statistically significant (p=0.02) 
reduction in ALP was observed in the apabetalone group of -14.0% compared to -6.3% in 
the placebo group, even in this small sub-population. Previously, serum ALP levels have been 
linked with increased CVD risk in diabetic and CKD patients [18], and associated with higher 
mortality and calcification in CKD as well as in dialysis patients [24]. Correlation analysis 
has also illustrated that higher ALP levels are associated with increased hazard ratios for 
CVD and ESRD risk as well as for overall mortality in multiple analyses, providing evidence 
of increased ALP and poorer CVD outcomes across all CKD stages [25]. By decreasing 
ALP, apabetalone treatment may therefore improve CVD outcomes in these patients. This 
hypothesis is supported by the finding of a more pronounced reduction of ALP in apabetalone 
treated patients who did not develop a MACE compared to patients who developed a MACE in 
the pooled analysis of all patients included in the SUSTAIN and ASSURE trials. These data are 
compatible with the hypothesis that ALP is part of an array of inter-correlated risk factors 
that contribute to CVD and CKD. It can also be hypothesized that since ALP has a role in the 
vasculature, where it inactivates pyrophosphate thereby promoting medial arterial vascular 
calcification, apabetalone may also prevent calcification.

Apabetalone treatment also resulted in an increase in eGFR of +3.4%, which was 
statistically significant compared to baseline, even in this small sub-population. Estimated 
glomerular filtration rate is the most widely utilized test for assessing kidney function. The 
CKD-EPI equation utilizes a patients’ blood creatinine level, along with age, race and gender 

Table 3. Treatment-emergent Serious Adverse Events (SAEs)
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System Organ Class/Preferred Term All 
(N=48) 

Placebo 
(N=13) 

Apabetalone 
(N=35) p-value 

Number of Subjects with at least one SAE 7 (14.6) 2 (15.4) 5 (14.3)  

Cardiac disorders 2 (4.2)   2 (5.7) 1.0 

Angina Pectoris 2 (4.2)   2 (5.7) 1.0 

General disorders and administration site conditions 1 (2.1) 1 (7.7)   0.3 

Death 1 (2.1) 1 (7.7)   0.3 

Hepatobiliary disorders 1 (2.1)   1 (2.9) 1.0 

Cholecystitis Acute 1 (2.1)   1 (2.9) 1.0 

Infections and infestations 1 (2.1)   1 (2.9) 1.0 

Infectious Mononucleosis 1 (2.1)   1 (2.9) 1.0 

Nervous system disorders 1 (2.1) 1 (7.7)   0.3 

Syncope 1 (2.1) 1 (7.7)   0.3 

Skin and subcutaneous tissue disorders 1 (2.1)   1 (2.9) 1.0 

Angioedema 1 (2.1)   1 (2.9) 1.0 

Vascular disorders 1 (2.1)   1 (2.9) 1.0 

Peripheral Vascular Disorder 1 (2.1)   1 (2.9) 1.0 
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to calculate this value. Extensive reporting of eGFR has provided an indirect correlation 
between lower GFR and higher CVD risk in diabetics and CKD patients [26]. Although serum 
ALP has previously been associated with CKD progression, the underlying mechanisms 
are still unclear. However, we demonstrate for the first time a pharmacologic reduction of 
serum ALP activity and an improvement of eGFR. These data suggest that BET inhibition by 
apabetalone may be beneficial for kidney function.

A number of limitations of the current study should be noted. Patient urine was not 
collected and as such no data on proteinuria data is available. Additionally, this post-hoc 
analysis represents a small subgroup from two larger studies, which were shorter in duration 
than previous evaluations of CVD therapies. The small sample size in each treatment group 
represents a limitation to the study as there were some differences in baseline characteristics. 
Whether a continued favorable impact of apabetalone might be observed during a longer 
period of follow-up is part of a pre-specified CKD sub-group in BETonMACE, a phase III 
clinical trial currently enrolling high-risk diabetes and CKD patients.

Conclusion

Apabetalone has beneficial effects on ALP and eGFR and is a potential novel therapeutic 
for the treatment of CKD. Currently, apabetalone is being evaluated in BETonMACE, 
a trial enrolling high risk post-acute coronary syndrome patients with diabetes, of 
which approximately 10-15% will have stage III CKD. Key clinical endpoints will include 
MACE reduction, renal function, and changes in CKD markers in the CKD patients in the 
trial. Furthermore, based on these observations, a phase IIa study in ESRD patients on 
hemodialysis (HD) is planned, with the evaluation of ALP levels, serum creatinine, serum 
calcium, inflammatory and metabolic biomarkers associated with CVD risk in dialysis 
patients as endpoints.
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